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Al~traet--The characteristics of forced-convection mass transfer around a moving gas-liquid compound 
encapsulated drop, assumed to be spherical and concentric, are studied numerically under the condition 
of uniform concentration at the outer interface. Numerical solutions of the Navier-Stokes equations and 
the diffusion equation including the first-order chemical reaction term have been obtained up to Re = 200. 
The effects of the inner and outer radii of the encapsulated drop, the physical properties of the fluids and 
the chemical reaction rate on the mass transfer coefficient are investigated quantitatively. The dependence 
of the concentration contours on the streamlines around the encapsulated drop is discussed in detail. 
Results of numerical predictions of the mass transfer coefficient are compared with previous results of the 
same for a gas bubble, for a liquid drop and for a rigid sphere. The work suggests the possibility of highly 
functional mass exchange by applying encapsulated drops as spherical liquid membranes. 
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I N T R O D U C T I O N  

The gas-liquid compound encapsulated drop, i.e. a spherical gas bubble coated with a thin liquid 
film, has received considerable attention because it has highly functional applications. For  example, 
the encapsulated drop could be applied to spherical liquid membranes with selectivity (Li 1971), 
direct-contact heat and mass exchangers and artificial blood oxygenations (e.g. Johnson & Sadhal 
1985). Furthermore, the spherical solid shell produced by solidifying the encapsulated drop could 
be applied to high-performance solid fuels, artificial organs, lightweight structural materials, 
buoyant catalytic agents, energy storage systems and so on (Lee et al. 1986). Johnson & Sadhal 
(1985) reviewed the previous research on compound multiphase drops and revealed that rigorous 
fluid-mechanical analysis was essential for such applications of  gas-liquid compound encapsulated 
drops. 

Recently, more fluid-dynamical analyses of  encapsulated drops have been reported. The 
formation mechanism of  the encapsulated drop was studied by Mori (1987), Greene et al. (1988), 
Hashimoto & Kawano (1989, 1990) and Kawano & Hashimoto (1990) using liquid-liquid-gas 
systems, and by Kendall (1986) and Lee & Wang (1986) using annular nozzles. The oscillating 
motion of  the encapsulated drop interfaces was studied by Landman (1985), Tsamopoulos & 
Brown (1987), Lee & Wang (1988) and Stone & Leal (1990). Furthermore, various sequential 
production devices of  relatively large spherical solid shells (up to 8 mm dia) using thermofluid 
dynamical effects were designed by Lee et al. (1986) and Hashimoto & Kawano (1991). 
Consequently, the mass production technique of stable encapsulated drops is considered to have 
reached the stage of practical use. 

For  the applications described above, it is necessary to investigate the heat and mass transfer 
characteristics around an encapsulated drop moving at finite velocity. There are some reports 
relating to the forced-convection heat and mass transfer around an encapsulated drop (Rushton 
& Davies 1983; Sadhal & Oguz 1985; Oguz & Sadhal 1987; Vuong & Sadhal 1989a, b). However, 
they are useful only in a creeping flow, i.e. they are based on Stokes' approximation theory. No 
data on basic theoretical research on the inertia effect of  the flow around an encapsulated drop 
are available. 

In the present paper, the characteristics of mass transfer around a moving encapsulated drop, 
assumed to be spherical and concentric, were studied numerically up to Reynolds numbers (Re) 
of  200 while the material underwent a first-order chemical reaction in the continuous phase. 
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M a s s  transfer coefficients were obtained from the numerical solutions of the Navier-Stokes 
equations and the diffusion equation under certain boundary conditions for the wide velocity range 
and for varying physical properties of the fluids. The dependence of the concentration contours 
on the streamlines is discussed based on computational visualizations. This report provides a basic 
understanding of the phenomena and the development of a highly functional mass exchanger using 
spherical liquid membranes with selectivity. 

THEORETICAL DEVELOPMENT 

Mathematical Model 

A spherical encapsulated liquid (phase 1) drop, radius ~' moving at a constant velocity U~ 
t h r o u g h  another immiscible fluid (phase 2), was the subject of research. The following assumptions 
are used in the analysis based on experimental data (e.g. Hashimoto & Kawano 1990): 

(1) The fluids are Newtonian and the flow is steady, viscous, incompressible and 
axisymmetric. 

(2) The physical properties are constant; therefore, the flow analysis is decoupled 
from the diffusion equation. 

(3) T h e  e f f ec t s  of gravity force and the inner gas motion are negligibly small. 
(4) The encapsulated drop consists of a spherical gas bubble coated with a concentric 

liquid film. 
(5) The oscillations of encapsulated drop interfaces are neglected. 
(6) The encapsulated drop always has a uniform constant concentration C~, where 

C is concentration and the subscript I indicates the value at the encapsulated drop 
outer interface. 

(7) Only the first-order chemical reaction is considered, i.e. the original material A 
changes into material B with reaction rate K in a moment. The diffusion of 
material B is neglected. 

In our previous paper (Kawano & Hashimoto 1992) it was reported that some encapsulated 
drops were nearly spherical for Re ~< 300, and that the inner and outer interfaces of the 
encapsulated drop with a thin liquid film and under large interface tensions were nearly concentric. 
Here, Re = 2~'p2 U~/r/2 represents the encapsulated drop Reynolds number, )1 is the fluid viscosity, 

U® 

/ Gas b u b b l e  

~-- P h a s e  1 

~'~ Phase  2 

U n i f o r m  i n t e r f a c e  
c o n c e n t r a t i o n  

Figure I. Schematic of the coordinate system and typical streamlines (at Re = I00, ~ = 1.4, ~c = 0.959 and 
? = 1.21) for an encapsulated liquid drop. 
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p is the fluid density and the subscript 2 indicates phase 2. The state of assumption (6) seems to 
actually stand when CI >> C~ is satisfied, whereby the subscript oo indicates the value at a large 
distance from the outer interface of the encapsulated drop. Although numerical study for the 
deformation of the encapsulated drop interfaces will become necessary, the purpose of this paper 
is to explore applications of the encapsulated drop as the first step. The schematic of the theoretical 
model, typical streamlines and the coordinate system are shown in figure 1. 

Basic  Equat ions  

The Navier-Stokes equations for steady, viscous, incompressible and axisymmetric flow in terms 
of the stream function ~, and vorticity o~ are written in spherical coordinates (r, 8) as follows: 

E 2 ~ . l  i = o o i r  • sin 8 [1] 

and 

where 

- - ~  l Or " r . s i n  8 - O - ~ ' 0 r  r . s i n 8  

E2 0 2 sin8 0 ( 1 0 )  
= ~r z +  r ----5-- 08 sin8 08 ' [31 

O, ei = 2Rpi  U~/rl~ is the gas bubble Reynolds number, R is the inner gas bubble radius and the 
subscript i is equal to 1 or 2 and indicates phase 1 or 2, respectively. Continuity equations are 
automatically satisfied by introducing ~O. The velocity components V are related to ~O by 

- 1 O~Oi Vo i = 1 0~i  
Vr ,  i = r 2 " sin 8 " 08 ' " r • sin 8 " dr ' [4] 

where subscripts r and 8 indicate the radial and tangential direction, respectively. 
The appropriate dimensionless diffusion equation for phase 2 with a first-order chemical reaction 

in the spherical coordinates is as follows: 

OC OC I"02 OC 2( [1 8 (  OC'~_ t 1 d ( s i n S . ~ _ ~ ) _ K . C  1 [5] 
0--t- + Vr,2 ~ r  + --=-" . . . . .  ~ r  ] r 2. sin 8" 8---~ r a8 Re. Sc ~'Orr r2 0C 

where Sc = q2/(Dp2) is the Schmidt number, D is the diffusivity of material A in phase 2 and t is 
time. 

All quantities have been made dimensionless using the following forms: 

r '  ( '  ~; og;R 
r = - ~  ~ = ~ ,  I~,= 0 ~ , = - -  

' U~o R 2 '  U~ ' 

V '  R 2 K  ' C '  - C~  t ' U ~  

V = u o o ,  K =  D ' C = C I _ C ~ ,  t =  R ' [6] 

where a prime denotes a dimensional value. 
The unsteady diffusion equation is used by considering that the physical time for reaching the 

steady-state concentration may be longer than that for reaching the steady state of the flow field. 
The boundary conditions are expressed as follows: 

(1) at the uniform free-stream condition (r---*~), 

r~----~ ½sin 2 8, [71 

c ~ 0; [8] 

(2) on the axis of symmetry (8 = 0, n), 

dC 
~b, = o~, = ~-~ = O; [91 
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(3) at the outer interface of  the encapsulated drop (r = (), 

and 

aq,, aq,2 
- -  - . ~ 0  

0~ 09 
aq, l 04,2 
Or Or 

c3 (1  O~kz) 9 ( 1 0 I p , )  
a-~ Y'-~-r = ~  ? ' -~ ;  

(no flow across the interface), [10] 

(continuity of tangential velocity), [11] 

(continuity of tangential stress) [12] 

C =  1 (uniform constant concentration); [13] 

(4) at the inner interface of the encapsulated drop (r = 1), 

- 0 [14]  09 

0 (1  0 ~ 1 ~ =  
~3r ~5' Or // 0 [15] 

where x = q~/r h is the viscosity ratio. 

(no flow across the interface), 

(zero tangential stress), 

The initial condition is as follows: 

C__{01 a t r > (  [16] 
at r = ( .  

In this paper, Re, ( (radius ratio), x, ~ (density ratio =P~/P2), Sc and K are fundamental 
dimensionless parameters. 

Numerical Method of Solution 
An exponential step size in the radial direction was used by employing the substitution 

r = exp(Z) and taking equal intervals in Z. After this transformation, [1] and [2] were rewritten 
as finite difference equations using the centered spatial differences of second-order accuracy and 
were solved by the SOR (successive over relaxation) method. Equation [5] was also rewritten using 
the centered spatial differences of  second-order accuracy and the backward time differences of  
second-order accuracy. Equation [5] was solved by the ADI (alternate direction iterative) method. 
This numerical code for C was developed based on the multipoint implicit method. In the 
calculation mesh system, the radial step size for Z was 0.0125, the angular step size was 1.5 ° and 
the dimensionless position of  the outer boundary was 54.6, which corresponded to r = oo. The SOR 
and ADI procedures were repeated until ~O, to and C changed by less than a specified tolerance 
per iteration. The tolerance was chosen to be 0.0001 for ~0 and to, and 0.00001 for C. The time 
step for C was 0.01. 

R ESULTS AND D I S C U S S I O N  

Figure 2 shows a sample of  time-dependent concentration contours, C = 0. In (n = 1 to 10). The 
values of  r and y are decided by considering that black ink is the medium in phase 1 and kerosene 
is the medium in phase 2 (e.g. Hashimoto & Kawano 1990). Figure 2 shows that the high 
concentration region (often referred to as a concentration wake) is convected downstream from 
the point close to the flow separation. Figure 2(d) shows that a pseudo-steady state seems to be 
achieved. This state means that the mean Sherwood number Shin defined in [18] reaches the 
unchanging constant [tolerance is 0.0001 per time step and gives the value t = 14.96 shown in figure 
2(d)]. In this paper, the local Sherwood number Sh and Shm are defined as follows: 

2~'N = -2(OC) [17] 
Sh = D(CI - C®) \OZ /z=zl 
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(a) t=3 (b) t=6 (c) t=9 (d) t=14.96 

F i g u r e  2. T i m e - d e p e n d e n t  c o n c e n t r a t i o n  c o n t o u r s  a t  Re  = 200, Sc = 10, ( = 1.4, ic = 0.959,  ~; = 1.21 a n d  
K = O .  
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F i g u r e  3. R e l a t i o n s h i p s  o f  Sh a n d  Vs. l to  S. 
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and 

fo~( ~C ) sin 9 • d,9, [18] S h i n = -  ~-Z z=z, 

where N is the local mass diffusion flux expressed by Fick's law at r = ~ and Zt satisfies ~ = exp(Z0. 
We will discuss the pseudo-steady state in the following. Figure 3 shows the relationship of Sh to 
the polar angle ~ at the values of  Re, Sc, ~, ~c, 7 and K shown in figure 2. The relationship of the 
interface tangential velocity V0,, to ~q and the flow separation point determined from the V0.rcurve 
are also shown in figure 3. At Re = 200, Sh decreases monotonously from the front stagnation point 
to the flow separation point. The increased Sh at the rear of  the encapsulated drop is caused by 
the action of the recirculating attached wake shown in figure 1. The minimum Sc occurs near the 
flow separation point. I f  the angular diffusion is negligible, the minimum occurs exactly at the flow 
separation point. Figure 4 shows the effect of  Sc on the concentration contours. The downstream 
concentration contours are distorted by the recirculatory flow in the wake shown in figure 1. 
The ratio of  distortion increases as Sc increases. At constant Re, increasing Sc narrows the 
concentration wake and thins the concentration boundary layer [see figure 5(c)]. Comparisons 
between concentration contours (right half) and the streamlines (left hal0 for various Re are shown 
in figure 5. The values of~k are equal to - 5  x 10 -2, - 2  x 10 -2, - 1 × 10 -2, --5 × 10 -3, - 2  x 10 -3, 
- 1 x 10 -3, 0, 2 x 10 -4, 5 × 10 -2, 0 .2 ,  0 .5 ,  1 and 2. Even at Re = 1, the asymmetry vs upstream 
and downstream appears in the concentration contours. At Re = 50, where a flow separation 
initially appears at approx. 0 = 172 °, the concentration wake locates behind the encapsulated drop. 
At Re = 100, where a flow separation occurs at ~9 = 150 ° and a large recirculating attached wake 
exists, the downstream concentration wake is narrowed and the concentration contours are 

(a.) Sc = 0.1 (b) S¢ = 100 

Figure 4. Concentration contours for various Sc at Re = 100, ( = 1.4, ~c = 0.959, ~, = 1.21 and K = 0. 
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distorted by the recirculatory flow in the wake. Increasing Re at constant Sc also narrows the 
concentration wake and thins the concentration boundary layer [see figure 2(d)]. These results have 
the same qualitative tendency as the results for a rigid sphere. Figure 6 shows the relationship of 
Shin to Re for various Sc. When Pe--,0, the numerical values approach the analytical value 
(Sh m = 2), where Pe = Re- Sc is the Prclet number. Shm increases as Re and Sc increase. In figure 6, 
the present numerical values are compared with those given by previous well-known equations as 
follows (e.g. Clift et al. 1978): 

and 

empirical correlations for a rigid sphere, 

Shm -- 2 + 0.6. Rel/2Sc'/3; [19] 

analytical equation in a Stokes flow fieM for a rigid sphere at Re---, O, 

Sh m = 1 + (1 + Pe)~/3; [20] 

analytical equation in a Hadamard-Rybczynski flow field for a gas bubble at Re--, 0 and in 
Pe > 100, 

2 
Shin = ~ Pel/2; [21] 

analytical equation in a potential flow field in Pe >> 1, 

2 
Shin = ~ Pe t/2. [22] 

w 

Comparing all the numerical values with those in [19], it is found that Shin is larger than that for 
a rigid sphere (e.g. at Sc = 10 in figure 6). This is caused by the mobility of the encapsulated drop 
outer interface shown in figure 3. The numerical values are between the values for a rigid sphere 
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obtained from [20] and for a gas bubble obtained from [21] at Sc -- 1000 and at low Re in figure 6. 
These ranges of  Re and Sc are significant when the encapsulated drop is applied as an artificial 
red corpuscle (in the blood flow, the ranges are approx. Re < 8.0 and Sc > 1181 at 30°C). Further- 
more, numerical values at Sc = 1000 and at high Re seem to approach the values obtained from 
[22]. For  a much higher Pe range than all the data shown in figure 6, the extremely fine calculation 
mesh system is needed for capturing an extremely thin concentration boundary layer. 

Comparisons between the concentration contours (right half) and the streamlines (left half) 
for various (, x and 7 are shown in figures 7, 8 and 9, respectively. The flow pattern around an 
encapsulated drop approaches that around a rigid sphere at (--,1 (Rushton & Davies 1983) and 
at x--,oo, that around a liquid drop at ( ~ o o  and that around a gas bubble at x--*0. In figure 7, 
it should be noted that the values of ~b are made dimensionless using the characteristic length R 
for the reasons of  the above numerical method; although Re is made dimensionless using the 
characteristic length ( ' .  Decreasing ( and increasing x narrow the concentration wake, because they 
decrease the mobility of  an outer interface and develop an attached wake behind the encapsulated 
drop. In figures 7(a), 8(b) and 8(c), the concentration contours are distorted and the area where 
C = 0 is formed at the rear of  the encapsulated drop by the strong recirculatory flow in the wake. 
Figures 7(c), 9(b) and 9(c) are only for reference because the encapsulated drop cannot move 
upward for the ( and 7 cases in actual phenomena. Comparing figure 9 with figures 7 and 8, it 
is found that the effect of 7 on the concentration contours is weaker than the effects of ~ and x. 
Increasing 7 means increasing the inertia effect on the spherical phase i motion and narrowing the 
attached wake. It was reported that the effect of increasing 7 on the mobility of the outer interface 
was very small (Kawano & Hashimoto 1992). Then, not only the effect of  the mobility of the outer 
interface but also the effect of the flow separation characteristics on the concentration contours 
is significant. Figure 10 shows the relationships of S h m  t o  ~, K and 7. From figure 10, it is found 
that Shin, which is related closely to the concentration boundary layer thickness, increases as 

increases and as x decreases. Note also that V~.j increases as ( increases and as ~c decreases. 
s a  m increases as the mobility becomes large. It is found that the dependence of S h  m o n  7 is not 
SO strong but the inertia effect of  phase 1 seems to appear in 7 ~> 10. Furthermore, at ~--~ 1 or at 
x---* oo, numerical values seem to approach S h  m for a rigid sphere (Shin = 14.9) obtained from [19]. 
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(a) K = 1 (b)  K = 10 (c) K = 100 

Figure  I I .  C o n c e n t r a t i o n  con tou r s  for var ious  K at  Re  = 100, Sc = 10, { = 1.4, ~ = 0.959 and  7 = 1.21. 
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On the other hand, Shm for a gas bubble or for a liquid drop can be predicted roughly by the 
following equation for Re > 70 and x < 2 (e.g. Clift et al. 1978): 

Shin = ~ 1 - (2.89 + . [23] 
" v  

The present numerical values seem to approximately approach Shin for a gas bubble (Shin = 35.7 
obtained from [22] or Shm = 30.1 obtained from [231) at ~: ~ 0  and for a liquid drop (Shin = 25.3 
obtained from [23]) at ~ o o .  In practical use, the results of  figures 7, 8 and 10 suggest that the 
mass transfer characteristics can be controlled easily by selecting ~ and x. 

Figure 11 shows the concentration contours for various K. The concentration wake becomes 
narrow as K increases because the chemical reaction becomes active in the high concentration 
region. A lot of  diffusing species (material A) would disappear at large K in the concentration wake. 
Figure 12 shows the relationship of  enhancement factor ~ to Re for various K. The enhancement 
factor is defined as 4~ = Shin,c/Shin, whereby the subscript C indicates the value with the chemical 
reaction. It is found that • increases as K increases and as Re decreases. Assuming that V = 0 in 
a steady state, the analytical solution of [5] is obtained as follows: 

C = -(- exp((x//K - r  v/K). [24] 
r 

Then, from [24], • is expressed as follows: 

= l +  [25] 

Figure 12 shows that the numerical values approach analytical values obtained from [25] at small 
Re. The * approaches 1 at large Re because the concentration wake, where the chemical reaction 
is active, becomes narrow as Re increases, as shown in figure 5. Furthermore, the effect of the 
chemical reaction term is small (1 ~ • ~< 1.14) for K ~< 10 and Re >/50 at the values of Sc, (, x and 
7 indicated in figure 12. 

Finally, we will discuss the time for reaching a pseudo-steady state ts. In an encapsulated drop, 
there is a large circulation in phase 1 at small Re, as shown in figure 5(a), and there are two 
circulations in phase 1 and a circulation wake behind the drop at relatively large Re, as shown in 
figure 5(c). Then, ts at high Pe must be significantly longer than any circulation duration. However, 
the circulation duration depends strongly on Re, ( and the physical properties of the liquids. For 
instance, the circulation duration along $2 = - 2  x 10 -3 of the wake was estimated roughly to be 
13 at Re = 200, ( = 1.4, x = 0.959 and 7 = 1.21 and the circulation duration in phase 1 increases 
infinitely at ( ~  1 or at x---, oo. However, the present representative numerical data of Shm were 
checked for the longer time (t = 50 and 100), as shown in table 1. The maximum deviation rate 
between Sh m for the pseudo-steady state and the Shm at t = 100 is 6.8% i.e. the values of  Shm seem 
to be almost unchanged. This suggests that the definition of  the pseudo-steady state in the present 
paper has a meaning in the practical engineering field. 

C O N C L U S I O N  

To investigate the mass transfer phenomenon around a moving encapsulated drop, the 
Navier-Stokes equations and the diffusion equation including the first-order chemical reaction term 

Table I. Representative numerical data for Shrn and t s 

Re Sc ~ K 7 K t s Shm Shm.t = 50 Shm.t = tOO 
0.1 0.1 1.4 0.959 1.21 0 0.48 2.20 2.07 2.05 

200 10 1.4 0.959 1.21 0 14.96 37.3 36.9 36.4 
10 1000 1.4 0.959 1.21 0 20.24 51.0 51.0 51.0 

100 10 1.2 0.959 1.21 0 17.79 21.1 20.7 20.4 
100 10 2.0 0.959 1.21 0 19.34 26.4 26.4 26.4 
100 10 1.4 0.1 1,21 0 6.29 31.4 31.4 31.4 
100 10 1.4 30 1.21 0 19.19 17.0 16.7 16.3 
I00 10 1.4 0.959 0.3 0 23.15 23.8 23.5 23.3 
100 I0 1.4 0.959 30 0 19.25 22.6 22.5 22.5 

0.1 10 1.4 0.959 1.21 1000 0.08 83.6 83.6 83.6 
200 10 1.4 0.959 1.21 1000 3.28 86.5 86.5 86.5 
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were solved by the multipoint implicit method under the condition of uniform interface concentra- 
tion. Consequently, the mass transfer characteristics around a spherically concentric encapsulated 
drop moving at finite Re (up to 200) were investigated for the wide velocity range and for different 
fluid physical properties. Although the applications of the present study may be limited to a 
spherically concentric encapsulated drop with no surfactant (no interfacial tension gradients), the 
effect of finite-Re flow was discussed quantitatively. The main features of this study are as follows: 

(1) The Shm for an encapsulated drop is larger than that for a rigid sphere and 
depends on ~ and ~. The result suggests the possibility of developing a highly 
functional mass exchanger by applying encapsulated drops as spherical liquid 
surfactant membranes with selectivity. 

(2) The Sh m increases as ~ increases and as ~: decreases because of the mobility of 
the encapsulated drop outer interface. The dependence of Shm on 7 is very weak. 
The effects of Re, Sc and K on the mass transfer characteristics for the 
encapsulated drop may have the same qualitative tendency as those for a gas 
bubble, for a liquid drop and for a rigid sphere. 

(3) There is a strong dependence of the mass transfer characteristics of the 
encapsulated drop on the outer interface mobility and on the flow separation 
characteristics around the encapsulated drop. 
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